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A molecular surface defined as an isosurface of the valence repulsion energy may be hard or
soft with respect to probe penetration. As a probe, the helium atom has been chosen. In ad-
dition, the Pauli exclusion principle makes the electronic structure change when the probe
pushes the molecule (at a fixed positions of its nuclei). This results in a HOMO–LUMO gap
dependence on the probe site on the isosurface. A smaller gap at a given probe position re-
flects a larger reactivity of the site with respect to the ionic dissociation.
Keywords: Hardness; HOMO–LUMO gap; Molecular surface; Valence repulsion; Ab initio cal-
culations; Hydrides.

Within the Born–Oppenheimer approximation, the concept of molecular
shape (or molecular surface) is often used. The shapes of two molecules in
most cases decide about the main characteristics of their interaction1.
Matching or docking of molecules is important in chemistry (supramolecu-
lar complexes) and even more in biology (e.g. enzymes and their ligands of
the “key-lock” or “hand-glove” types). Despite its evident utility, unfortu-
nately, the shape of the molecular surface cannot have a unambigous defi-
nition2.

In the present paper we are interested in how a closed shell molecule re-
sponds to penetration of its surface by a closed-shell probe. We will be par-
ticularly interested in a special role of the Pauli exclusion principle that
forbids two closed shell systems to approach too close, more specifically in
the valence repulsion energy of the two closed-shell systems, Erep, the later
being a direct consequence of the Pauli exclusion principle. Two kinds of
the response will be considered, namely the molecular surface hardness as
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the first derivative of Erep with respect to the coordinate oriented inwards
the molecule perpendicularly to the isosurface and in the HOMO–LUMO
gap behaviour as a function of the probe position on the molecular surface.

At large intermolecular distances, a dominant contribution to the interac-
tion energy is usually the electrostatic one3,4, defined as the Coulombic in-
teraction of the unchanged (frozen) charge distributions of individual
molecules. At intermediate distances, the dispersion and induction contri-
butions increase to such an extent that they come additionally into play (as
well as some higher-order terms of smaller importance)5.

The notions of the electrostatic, dispersion and induction energies come
from the polarization approximation in the Rayleigh–Schrödinger pertur-
bational theory of intermolecular forces6, in which the zero-order wave
function ϕ(0) is assumed as the product of the normalized solutions to the
Schrödinger equation for the individual molecules, ϕ(0) = ϕAϕB. Note, that
the ϕ(0) function does not fulfil the Pauli exclusion principle, since an elec-
tron exchange between the subsystems A and B does not change the sign of
the function, but leads to a distinct function.

In the so-called symmetry-adapted perturbation theory (SAPT)7, the
zero-order wave function is taken as the antisymmetrized product ψ(0) =
N $A[ϕAϕB] (called also the Heitler–London function), where N is a normal-
ization constant and $A stands for the idempotent ( $A2 = $A) antisym-
metrizer. For a moment we assume that ϕA and ϕB represent the exact wave
functions for the subsystems that correspond to the exact energies EA and
EB. For two closed-shell systems the SAPT gives the valence repulsion con-
tribution (Erep) as

Erep = EHL – Eelst , (1)

where the Heitler–London interaction energy

EHL = ( )ψ ψ( ) ( )| $0 0H E E− −A B (2)

and the electrostatic energy, Eelst, (identical to that appearing within the
polarization approximation) is defined as

Eelst = ϕ ϕ( ) ( )| $0 0V , (3)
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where $H is the electronic Hamiltonian, $V is the intermolecular interaction
operator composed of all Coulombic interactions of particles (electrons and
nuclei) of monomer A with those of monomer B. The electrostatic energy
may be split into a part that is representable by the multipole–multipole in-
teractions6 (the permanent multipole moments of the isolated subsystems)
Emultipol and a remainder, Epen, the penetration energy that is a correction to
the Coulombic interaction coming from interpenetration of the interacting
charge distributions (it decays very fast with increasing distance)

Eelst = Emultipol – Epen . (4)

These quantities are related to the first-order SAPT energy correction (E(1))
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through the relation

E(1) ≡ EHL . (6)

For large intersystem distances the valence repulsion Erep may be approxi-
mated by a power series of terms proportional to the overlap of the inter-
acting charge distributions, the first term being of the order of S2, where S is
an overlap integral between the orbitals of the interacting subsystems – a
measure of their interpenetration in space.

The extent of the molecular interpenetration at the total energy mini-
mum is related not only to the valence repulsion, but also to other contri-
butions, among others all the above mentioned attractive effects. Since the
concept of the molecular shape should be related to its repulsive core rather
than to interaction with any particular molecule, we introduce a definition
of the molecular surface that highlights the valence-repulsion of two sub-
systems: the molecule under study and a probe. In particular, one of the in-
teracting closed-shell subsystems may be taken following Amovilli and
McWeeny2 as the ground-state helium atom thus representing a simple
structureless spherically symmetric atomic probe. The helium atom seems
to be quite a particular probe. Helium, which shares a negative electron af-
finity with all the noble gas atoms (exception among all other elements),
has its absolute value the largest (14.4 kcal/mol)8, thus minimizing its role
as an electron acceptor. At the same time, its ionization potential is the
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highest in the periodic table (566.9 kcal/mol), thus minimizing its electron-
donor role. One may conclude that such a probe represents probably an
atom that is the most inert possible, while when interacting still offers two
electrons as a subject of the Pauli exclusion principle. In such a case (zero
electric multipole moments of the probe and therefore Emultipol = 0), the va-
lence repulsion interaction energy

Erep = EHL – Epen . (7)

In practice, ϕA and ϕB are never the exact wave functions. If ~ϕ A and ~ϕ B are
some approximations to the exact solutions ϕA and ϕB, e.g. the Slater deter-
minant functions, then the EHL computed from Eq. (2) and E(1) of Eq. (5)
are not equal anylonger and the difference ∆LM (the Landshoff and Murrell
deltas9,10, ∆L and ∆M, respectively) can be written in the following form:

∆ ∆ ∆LM L M HL= + = − =E E ( )1
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where $H A and $H B are the Hamiltonians for the A and B subsystems. It has
been shown that when the Slater determinants for the isolated monomers
are constructed from the exact Hartree–Fock orbitals9 or when the orbitals
are calculated in the dimer atomic basis set11, then ∆L = 0 and that ∆M =
O(S4)12, where S is an overlap integral. In our calculations the Landshoff ∆L
turned out to be as small as 10–8 kcal/mol, which is the result of using the
dimer basis set, while the Murrell delta is of the order of 0.05 kcal/mol for
all the molecules under study.

The SCF LCAO MO approximations to the wave functions of the isolated
interacting species (~ϕ A and ~ϕ B ) have been used and therefore, according to
Eq. (8), the valence repulsion energy has been computed from Eq. (1) with

EHL = E(1) – ∆LM . (9)

The basis sets employed are the Dunning’s d-aug-cc-pVDZ 13. The geome-
tries of all the molecules under study have been first optimized. The opti-
mized methane geometry corresponds to rCH = 1.086 Å, for the ammonia
molecule rCH = 0.9979 Å and the HNH angle is equal to 108.11°, the water
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molecule geometry corresponds to rOH = 0.94085 Å and αHOH = 104.69°,
while the hydrogen fluoride bond length is equal to 0.8972 Å.

THE SURFACE DISTRIBUTION OF THE PAULI HARDNESS AND OF THE
HOMO–LUMO GAP

Having defined the molecular shape as the valence repulsion isosurface,
one may be interested in how easily the probe penetrates the isosurface, i.e.
in the hardness of a particular spot on the isosurface. The Pauli hardness
h(1)(P) is defined15 as the first derivative of the valence repulsion energy
computed at a given point of the valence repulsion +5 kcal/mol isosurface
(the value has been chosen to be consistent with the convention adopted
in ref.2) in the direction ∇ Erep (i.e., normal to this isosurface) with the corre-
sponding coordinate r > 0 meaning the probe penetrating the molecular
volume:

h(1)(P) =
∂
∂r

E
r

rep






=0

, (10)

where r = 0 corresponds to the point of the isosurface (higher-order hard-
nesses, or hyperhardnesses can be defined as well).

The probe entering the isosurface makes an electron cloud flow, which
changes the energy spectrum. In the acceptor–donor reaction rate theory16,
collision of two molecules constitutes a perturbation which leads to an
avoided crossing. When the reaction begins, one of the diabatic surfaces in-
volved corresponds to the ground electronic state, the other to an excited
state (with an electronic charge distribution resembling that of the reaction
products), whereas when the reaction ends, their energies order is reversed.
It is shown16 that the key excited state that resembles the products corre-
sponds to the HOMO→LUMO single excitation. Therefore, the HOMO–LUMO
gap

∆ε = ε(LUMO) – ε(HOMO) , (11)

where ε means the orbital energy, may be considered as related to the en-
ergy barrier to overcome. Two reacting molecules or a single molecule with
a probe may undergo such a HOMO–LUMO intersection just by mechanical
pushing (molecule–molecule or molecule–probe). The larger the ∆ε the lar-
ger the deformation needed to overcome the barrier and the larger the bar-
rier itself. Both HOMO and LUMO of the first-row hydride molecule–probe
system are localized on the molecule, not on the probe (the probe orbital
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energy is equal to –0.88 a.u., while the HOMO and LUMO energies for, e.g.,
the hydrogen fluoride molecule are much higher in the energy scale: –0.65
and 0.01 a.u., respectively; for other molecules studied, the probe orbital
energy separation is even larger) and therefore the ∆ε as a function of the
probe position on the energy isosurface may be viewed as a surface reactiv-
ity (with respect to the intramolecular electron transfer) distribution of the
molecule under study

∆ε(rS) = [ε(LUMO)(rS) – ε(HOMO)(rS)] , (12)

where rS is the probe position on the valence repulsion +5 kcal/mol iso-
surface.

Isosurfaces are bound to have a certain arbitrariness in their definition.
One may ask, whether the hardnesses obtained depend qualitatively on a
particular definition. To check that we have used additionally the isosur-
face definition that is based on the Hartree–Fock interaction energy Eint

HF

(calculated with the Boys–Bernardi counterpoise correction for the basis set
superposition). The corresponding isosurface may be penetrated perpendic-
ularly by the helium probe and the corresponding Hartree–Fock hardness
may be computed using Eint

HF

h(1)HF =
∂
∂r

E
r

int
HF





=0

. (13)

RESULTS AND DISCUSSION

The valence repulsion isosurface itself as well as the ∆ε(rS) and h(1) functions
of the position on the isosurface exhibit, of course, the symmetry of the
molecule i.e. transform according to its fully symmetric irreducible repre-
sentation.

Figures 1a–1d show the positions rS of the helium atoms at the 5 kcal/mol
isosurface of the valence repulsion energy Erep together with the values
∆ε(rS) and the Pauli maximum and minimum hardnesses h(1)(P) for the four
molecules under study: HF, H2O, NH3, CH4.

The 5 kcal/mol isosurface is convex for all the molecules studied, the
overall shape is roughly spherical, but its anisotropy is well marked for all
the molecules. The distance from the heavy atom nucleus to the isosurface
(r) depends significantly on the direction chosen. Interestingly15, the ampli-
tude ∆r = rmax – rmin is very much the same (0.37 Å) for NH3, H2O and HF
molecules, while the methane molecule is an exception with ∆r = 0.49 Å.

Collect. Czech. Chem. Commun. (Vol. 68) (2003)

Hardness and HOMO–LUMO Gap 2349



Collect. Czech. Chem. Commun. (Vol. 68) (2003)

2350 Małolepsza, Piela:

FIG. 1
The helium atomic probe positions on the +5 kcal/mol isosurface of the valence repulsion en-
ergy, Erep, for CH4 (a), NH3 (b), H2O (c) and HF (d). The shadow of the helium probe corre-
sponds to the value of the HOMO–LUMO gap, when the probe penetrates the molecule in the
direction normal to the isosurface. The white (black) color corresponds to the lowest (largest)
gap. The numbers shown correspond to the HOMO–LUMO gap (in kcal/mol) relative to the
HOMO–LUMO gap minimum for a given molecule reported in column 7 of Table I (in a.u.).
The narrow arrows show the points of the isosurface that are the closest to (rmin, white arrow)
and most distant from (rmax, black arrow) the heavy atom. The wide black (white) arrow shows
the surface point that corresponds to the maximum (minimum) Pauli hardness

a

c

b

d



In order to make the two isosurfaces (of Erep and Eint
HF ) comparable, we

have assumed that they have a common point opposite to the heavy atom
and corresponding to the 5 kcal/mol valence repulsion energy (therefore
they are tangent one to the other). The isosurface of the Hartree–Fock inter-
action energy differs only by about 0.05 Å. The corresponding electronic
density isosurface, which also has been computed, deviates a little more by
about 0.12 Å.

As shown in Table I the computed numerical values of h(1)(P) and h(1)(HF)
obviously differ, the h(1)(HF) is roughly twice as small as the h(1)(P).
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TABLE I
Hardnesses (h(1) in kcal/mol Å) and the HOMO–LUMO gaps ∆ε for the methane, ammonia,
water and hydrogen fluoride molecules in their equilibrium Hartree–Fock geometries calcu-
lated for the +5 kcal/mol isosurface of the valence repulsion (a) as well as for the corre-
sponding (see the text) isosurface of the Hartree–Fock interaction energy (b). In columns 2
and 3 the maximum (hmax

( )1 ) and minimum (hmin
( )1 ) values of the hardness h(1) are given, the col-

umn 4 contains their difference (anisotropy ∆h(1)), all the quantities in kcal/mol Å. In the
column 5 the HeXH angles α (in °; X means the heavy nucleus) are reported, where the he-
lium atom position corresponds to the maximum hardness. Columns 6–9 contain the maxi-
mum ∆ε, the minimum ∆ε (in hartree) and their difference ∆(gap) (in kcal/mol) as well as
the angle β (in °) that corresponds to that helium position that exhibits the minimum of ∆ε

a) Isosurface of the valence repulsion energy

Molecule hmax
( )1 (P) hmin

( )1 (P) ∆h(1)(P) αHeXH ∆εmax ∆εmin ∆(gap) βHeXH

CH4 18.66 18.08 0.58 43 0.5485 0.5474 0.73 3

NH3 19.94 16.71 3.23 44 0.4326 0.4305 1.34 6

H2O 20.96 18.53 2.43 44 0.5173 0.5145 1.77 4

HF 22.14 20.66 1.48 180 0.6601 0.6565 2.29 0

b) Isosurface of the HF interaction energy

Molecule hmax
( )1 (HF) hmin

( )1 (HF) ∆h(1)(HF) αHeXH ∆εmax ∆εmin ∆(gap) βHeXH

CH4 8.03 7.80 0.23 57 0.5485 0.5472 0.82 6

NH3 7.82 6.52 1.30 44 0.4327 0.4306 1.29 16

H2O 8.64 7.55 1.09 37 0.5173 0.5144 1.86 7

HF 9.37 8.68 0.69 180 0.6601 0.6556 2.83 0



The Pauli hardnesses differ widely within a single molecule (the upper
part of Table I), thus exhibiting a strong anisotropy (the same pertains to
the Hartree–Fock hardness)15. However, for both definitions of the hard-
ness, the anisotropy is the largest for the ammonia molecule, it decreases
monotonically with the heavy atom atomic number with a remarkable ex-
ception for the methane molecule. Interestingly, it turned out that the
hardest parts of the valence repulsion isosurface often correspond to the
global minimum of the interaction energy15.

Figure 1 shows the surface distribution of ∆ε(rS), while in Table I are col-
lected the maximum and minimum values of ∆ε of Eq. (12) for each of the
molecules and the two definitions of the isosurface (columns 6–9). It turns
out that the trends obtained are independent of the isosurface definition,
the gap increases with the atomic number of the heavy atom. As seen from
Table I (column 9, upper part of the Table) for all the XHn molecules under
study and practically independently of the particular isosurface, the small-
est gap corresponds to the probe pushing almost along a H–X bond (within
the accuracy of about 6°) right towards the protruding hydrogen atom (see
βHeXH). On the other hand, the maximum gap in all cases corresponds to
the opposite direction, which means pushing the X atom. Similar results
correspond to the Hartree–Fock isosurface (column 9, lower part of the Ta-
ble). The probe pushing the molecular electron cloud (due to the Pauli ex-
clusion principle) makes the pushed site to play a role of the forced electron
donor. According to the interpretation given above, the lowest gap means
that the intramolecular electron transfer reaction occurs more easily (larger
reactivity). Therefore the problem of the gap may be understood when con-
sidering whether it is easier to force the H+(XH n −

−
1 ) polarization when push-

ing the probe towards the hydrogen atom along the HX bond, or to force
the H–(XH n −

+
1 ) polarization when pushing the probe from the X side. Since

the hydrogen atom electronegativity is lower than any of the X atoms con-
sidered, the HOMO–LUMO gap is smaller for the hydrogen atom head-on
pushing by the helium atom probe. In conclusion, the probe that pushes a
particular site of a molecule makes the site acting as a forced electron do-
nor. The probe when pushing lowers the energy of that excited state which
resembles the new electronic distribution with the site positively charged.

As one can see from Table I (column 8), the largest as well as the smallest
HOMO–LUMO gap increases monotonically with the atomic number of the
X atom except for the methane molecule. Despite the methane exception
the gap amplitude ∆(gap) changes monotonically.
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As seen from Figs 1a–1d, the maximum hardness position coincides
roughly with the HOMO–LUMO gap maximum except for ammonia mole-
cule.

CONCLUSIONS

One may conclude that for the homologous series under study
– the valence repulsion isosurface although roughly of spherical shape ex-

hibits a significant anisotropy. The isosurface exhibits the site-dependent
Pauli and Hartree–Fock hardness

– the HOMO–LUMO energy gap varies up to 1% for a given molecule (the
HOMO–LUMO gap anisotropy), when subject to pushing by the helium
probe (at the 5 kcal/mol valence repulsion isosurface and the corresponding
isosurface of Eint

HF )
– the anisotropy of the HOMO–LUMO gap changes monotonically with

the atomic number of the X atom and attains the maximum value for the
HF molecule, while it is the smallest for the CH4 molecule

– for a given molecule, the lowest HOMO–LUMO energy gap corresponds
to the head-on probe approach to the hydrogen atom nearly along the H–X
bond direction

– for a given molecule, the largest HOMO–LUMO energy gap corresponds
to the head-on probe approach to the X atom nearly along the X–H bond
direction

– these directions are related to the expected polarization of the molecule
forced by pushing by he helium probe atom (easier for the direction from
the less negative to more negative atom than the other way round).

This work was supported by the KBN Ph.D. grant 4 T09A 084 25 as well by a computational grant
from the Interdisciplinary Center for Mathematical and Computational Modeling (ICM). Most calcula-
tions have been carried out using the SAPT program written in cooperation between the University of
Warsaw and the University of Delaware research groups. The electronic density is computed by using
the Gaussian program. For all atoms, the d-aug-cc-pVDZ basis set has been used.
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